-
Engineering
-
Life Sciences
-
Health Sciences
-
Physical & Chemical Sciences
-
Social Sciences & Humanities
- Multidisciplinary
- Engineering
- Life Sciences
- Health Sciences
- Physical Sciences
- Chemical Sciences
- Social Sciences & Humanities
Past Issues
- 2024 Past Issues
- 2023 Past Issues
- 2022 Past Issues
- 2021 Past Issues
- 2020 Past Issues
- 2019 Past Issues
- 2018 Past Issues
-
Call for Papers Feb-2025
Paper Submission: 25-Feb-2025
Publication: 28-Feb-2025
Volume 7 ---> Issue 12
Volume 7 ---> Issue 11
Volume 7 ---> Issue 10
Volume 7 ---> Issue 9
Volume 7 ---> Issue 8
Volume 7 ---> Issue 7
Volume 7 ---> Issue 6
Volume 7 ---> Issue 5
Volume 7 ---> Issue 4
Volume 7 ---> Issue 3
Volume 7 ---> Issue 2
Volume 7 ---> Issue 1
Volume 6 ---> Issue 9
Volume 6 ---> Issue 8
Volume 6 ---> Issue 7
Volume 6 ---> Issue 4
Volume 6 ---> Issue 3
Volume 3 ---> Issue 12
Volume 2 ---> Issue 3
Volume 7 ---> Issue 11
Volume 7 ---> Issue 10
Volume 7 ---> Issue 9
Volume 7 ---> Issue 8
Volume 7 ---> Issue 7
Volume 7 ---> Issue 6
Volume 7 ---> Issue 5
Volume 7 ---> Issue 4
Volume 7 ---> Issue 3
Volume 7 ---> Issue 2
Volume 7 ---> Issue 1
Volume 6 ---> Issue 9
Volume 6 ---> Issue 8
Volume 6 ---> Issue 7
Volume 6 ---> Issue 4
Volume 6 ---> Issue 3
Volume 3 ---> Issue 12
Volume 2 ---> Issue 3
Volume 6 ---> Issue 12
Volume 6 ---> Issue 11
Volume 6 ---> Issue 10
Volume 6 ---> Issue 9
Volume 6 ---> Issue 8
Volume 6 ---> Issue 7
Volume 6 ---> Issue 6
Volume 6 ---> Issue 5
Volume 6 ---> Issue 4
Volume 6 ---> Issue 3
Volume 6 ---> Issue 2
Volume 6 ---> Issue 1
Volume 5 ---> Issue 6
Volume 5 ---> Issue 5
Volume 5 ---> Issue 1
Volume 4 ---> Issue 10
Volume 4 ---> Issue 3
Volume 4 ---> Issue 1
Volume 3 ---> Issue 12
Volume 3 ---> Issue 10
Volume 3 ---> Issue 8
Volume 3 ---> Issue 6
Volume 2 ---> Issue 7
Volume 2 ---> Issue 4
Volume 1 ---> Issue 5
Volume 1 ---> Issue 4
Volume 1 ---> Issue 3
Volume 6 ---> Issue 11
Volume 6 ---> Issue 10
Volume 6 ---> Issue 9
Volume 6 ---> Issue 8
Volume 6 ---> Issue 7
Volume 6 ---> Issue 6
Volume 6 ---> Issue 5
Volume 6 ---> Issue 4
Volume 6 ---> Issue 3
Volume 6 ---> Issue 2
Volume 6 ---> Issue 1
Volume 5 ---> Issue 6
Volume 5 ---> Issue 5
Volume 5 ---> Issue 1
Volume 4 ---> Issue 10
Volume 4 ---> Issue 3
Volume 4 ---> Issue 1
Volume 3 ---> Issue 12
Volume 3 ---> Issue 10
Volume 3 ---> Issue 8
Volume 3 ---> Issue 6
Volume 2 ---> Issue 7
Volume 2 ---> Issue 4
Volume 1 ---> Issue 5
Volume 1 ---> Issue 4
Volume 1 ---> Issue 3
Volume 5 ---> Issue 12
Volume 5 ---> Issue 10
Volume 5 ---> Issue 9
Volume 5 ---> Issue 8
Volume 5 ---> Issue 7
Volume 5 ---> Issue 6
Volume 5 ---> Issue 5
Volume 5 ---> Issue 4
Volume 5 ---> Issue 3
Volume 5 ---> Issue 2
Volume 5 ---> Issue 1
Volume 3 ---> Issue 11
Volume 3 ---> Issue 9
Volume 3 ---> Issue 3
Volume 2 ---> Issue 12
Volume 2 ---> Issue 4
Volume 1 ---> Issue 10
Volume 1 ---> Issue 8
Volume 1 ---> Issue 5
Volume 2 ---> Issue 1
Volume 5 ---> Issue 10
Volume 5 ---> Issue 9
Volume 5 ---> Issue 8
Volume 5 ---> Issue 7
Volume 5 ---> Issue 6
Volume 5 ---> Issue 5
Volume 5 ---> Issue 4
Volume 5 ---> Issue 3
Volume 5 ---> Issue 2
Volume 5 ---> Issue 1
Volume 3 ---> Issue 11
Volume 3 ---> Issue 9
Volume 3 ---> Issue 3
Volume 2 ---> Issue 12
Volume 2 ---> Issue 4
Volume 1 ---> Issue 10
Volume 1 ---> Issue 8
Volume 1 ---> Issue 5
Volume 2 ---> Issue 1
Volume 4 ---> Issue 12
Volume 4 ---> Issue 11
Volume 4 ---> Issue 10
Volume 4 ---> Issue 9
Volume 4 ---> Issue 8
Volume 4 ---> Issue 7
Volume 4 ---> Issue 6
Volume 4 ---> Issue 5
Volume 4 ---> Issue 4
Volume 4 ---> Issue 3
Volume 4 ---> Issue 2
Volume 4 ---> Issue 1
Volume 3 ---> Issue 10
Volume 3 ---> Issue 6
Volume 2 ---> Issue 5
Volume 2 ---> Issue 3
Volume 2 ---> Issue 2
Volume 1 ---> Issue 10
Volume 1 ---> Issue 4
Volume 2 ---> Issue 1
Volume 4 ---> Issue 11
Volume 4 ---> Issue 10
Volume 4 ---> Issue 9
Volume 4 ---> Issue 8
Volume 4 ---> Issue 7
Volume 4 ---> Issue 6
Volume 4 ---> Issue 5
Volume 4 ---> Issue 4
Volume 4 ---> Issue 3
Volume 4 ---> Issue 2
Volume 4 ---> Issue 1
Volume 3 ---> Issue 10
Volume 3 ---> Issue 6
Volume 2 ---> Issue 5
Volume 2 ---> Issue 3
Volume 2 ---> Issue 2
Volume 1 ---> Issue 10
Volume 1 ---> Issue 4
Volume 2 ---> Issue 1
Volume 3 ---> Issue 12
Volume 3 ---> Issue 11
Volume 3 ---> Issue 10
Volume 3 ---> Issue 9
Volume 3 ---> Issue 8
Volume 3 ---> Issue 7
Volume 3 ---> Issue 6
Volume 3 ---> Issue 5
Volume 3 ---> Issue 4
Volume 3 ---> Issue 2
Volume 3 ---> Issue 1
Volume 2 ---> Issue 11
Volume 2 ---> Issue 2
Volume 1 ---> Issue 10
Volume 1 ---> Issue 9
Volume 1 ---> Issue 3
Volume 3 ---> Issue 11
Volume 3 ---> Issue 10
Volume 3 ---> Issue 9
Volume 3 ---> Issue 8
Volume 3 ---> Issue 7
Volume 3 ---> Issue 6
Volume 3 ---> Issue 5
Volume 3 ---> Issue 4
Volume 3 ---> Issue 2
Volume 3 ---> Issue 1
Volume 2 ---> Issue 11
Volume 2 ---> Issue 2
Volume 1 ---> Issue 10
Volume 1 ---> Issue 9
Volume 1 ---> Issue 3
Volume 2 ---> Issue 12
Volume 2 ---> Issue 11
Volume 2 ---> Issue 10
Volume 2 ---> Issue 9
Volume 2 ---> Issue 6
Volume 2 ---> Issue 5
Volume 2 ---> Issue 4
Volume 2 ---> Issue 3
Volume 2 ---> Issue 2
Volume 2 ---> Issue 8
Volume 2 ---> Issue 1
Volume 2 ---> Issue 11
Volume 2 ---> Issue 10
Volume 2 ---> Issue 9
Volume 2 ---> Issue 6
Volume 2 ---> Issue 5
Volume 2 ---> Issue 4
Volume 2 ---> Issue 3
Volume 2 ---> Issue 2
Volume 2 ---> Issue 8
Volume 2 ---> Issue 1
Call for Papers
Manual Article Submission
Email Us : editor@ijamsr.com
Track Your Article
Special Issue

Past Issues
Forecasting Railway Passengers Demand Using Holt-Winter Method With R Statistical Tool
Dr. M.Rani Reddy
CrossRef DOI : 10.31426/ijamsr.2019.2.8.1811
CrossRef DOI URL : https://doi.org/10.31426/ijamsr.2019.2.8.1811
Download PDF
Google Search
Abstract
Holt-Winter Double exponential smoothing is a statistical method that can be used to forecast the demand of any object with time and seasonality statistics. This paper explores how we can use that method adopted to railway passengers’ demand forecasting with the help of a software tool R which can support both Arithmetic and Statistical methods. This tool simply accepts the Input in proper format and forecasts the demand without the assistance of any other layouts which can be used in normal statistical methods to produce the result. R is a built in tool with graphical layouts. This paper explains how we can forecast demand with Exponential smoothing method using R tool.
Designing And Implementation Of Simple Retinal Vessel Separation Based On Adaptive Local Thresholding
Mohammad Sami, Dr. Avinash Gour
CrossRef DOI : 10.31426/ijamsr.2019.2.8.1812
CrossRef DOI URL : https://doi.org/10.31426/ijamsr.2019.2.8.1812
Download PDF
Google Search
Abstract
The retina has one of the items like retinal blood vessels. The attributes of the retinal vessels have their unique size and shape. Illnesses endured by people, with cardiovascular disorders, hypertension and diabetic retinopathy can be recognized by looking at these blood vessels. A computerized framework that can recognize blood vessels from different items in the retina is here introduced. It comprises of segmentation, pre-processing and exactness computations.
Gaussian Process And Compbined Kernel Supported Analyzing Hyper Supernatural Reflectivity
Sunil Singarapu, Dr. Avinash Gour
CrossRef DOI : 10.31426/ijamsr.2019.2.8.1813
CrossRef DOI URL : https://doi.org/10.31426/ijamsr.2019.2.8.1813
Download PDF
Google Search
Abstract
In this system, we gauge join a section choice technique, taking into account molecule swarm update (PSO), with a piece procedure, uphold vector machines (SVM), to lessen the dimensionality of hyper ridiculous information for demand. We review several undeniable kernals, including some improved for hyper absurd assessment. Specifically, an advancing segment called perception point subordinate (OAD) piece, from the outset pronounced for Gaussian Process descend into sin, was released up for SVM gathering. The SVM with the adjusted kernal was then applied to prompt the segment confirmation of a twofold kind of PSO. We embrace the strategy utilizing hyper powerful edifying records got of most recent tests from Western Australia. The test outcomes show that our framework can reasonably reduce the measure of highlights while keeping, or in any case, changing, the presentation of the SVM classifier. With current and moving toward symbolism spectrometers, mechanized band examination procedures are depended upon to draw in gainful unmistakable check of most significant social occasions to help improved treatment of terrible information into evaluations of biophysical factors.
Information for Authors
Search Article
