- Multidisciplinary
- Engineering
- Life Sciences
- Health Sciences
- Physical Sciences
- Chemical Sciences
- Social Sciences & Humanities
Past Issues
- 2024 Past Issues
- 2023 Past Issues
- 2022 Past Issues
- 2021 Past Issues
- 2020 Past Issues
- 2019 Past Issues
- 2018 Past Issues
-
Call for Papers Sep-2024
Paper Submission: 25-Sep-2024
Publication: 30-Sep-2024
Volume 7 ---> Issue 7
Volume 7 ---> Issue 6
Volume 7 ---> Issue 5
Volume 7 ---> Issue 4
Volume 7 ---> Issue 3
Volume 6 ---> Issue 9
Volume 6 ---> Issue 8
Volume 6 ---> Issue 7
Volume 6 ---> Issue 4
Volume 6 ---> Issue 3
Volume 3 ---> Issue 12
Volume 2 ---> Issue 3
Volume 7 ---> Issue 6
Volume 7 ---> Issue 5
Volume 7 ---> Issue 4
Volume 7 ---> Issue 3
Volume 6 ---> Issue 9
Volume 6 ---> Issue 8
Volume 6 ---> Issue 7
Volume 6 ---> Issue 4
Volume 6 ---> Issue 3
Volume 3 ---> Issue 12
Volume 2 ---> Issue 3
Volume 6 ---> Issue 12
Volume 6 ---> Issue 11
Volume 6 ---> Issue 10
Volume 6 ---> Issue 9
Volume 6 ---> Issue 8
Volume 6 ---> Issue 7
Volume 6 ---> Issue 6
Volume 6 ---> Issue 5
Volume 6 ---> Issue 4
Volume 6 ---> Issue 3
Volume 6 ---> Issue 2
Volume 6 ---> Issue 1
Volume 5 ---> Issue 6
Volume 5 ---> Issue 5
Volume 5 ---> Issue 1
Volume 4 ---> Issue 10
Volume 4 ---> Issue 3
Volume 4 ---> Issue 1
Volume 3 ---> Issue 12
Volume 3 ---> Issue 10
Volume 3 ---> Issue 8
Volume 3 ---> Issue 6
Volume 2 ---> Issue 7
Volume 2 ---> Issue 4
Volume 1 ---> Issue 5
Volume 1 ---> Issue 4
Volume 1 ---> Issue 3
Volume 6 ---> Issue 11
Volume 6 ---> Issue 10
Volume 6 ---> Issue 9
Volume 6 ---> Issue 8
Volume 6 ---> Issue 7
Volume 6 ---> Issue 6
Volume 6 ---> Issue 5
Volume 6 ---> Issue 4
Volume 6 ---> Issue 3
Volume 6 ---> Issue 2
Volume 6 ---> Issue 1
Volume 5 ---> Issue 6
Volume 5 ---> Issue 5
Volume 5 ---> Issue 1
Volume 4 ---> Issue 10
Volume 4 ---> Issue 3
Volume 4 ---> Issue 1
Volume 3 ---> Issue 12
Volume 3 ---> Issue 10
Volume 3 ---> Issue 8
Volume 3 ---> Issue 6
Volume 2 ---> Issue 7
Volume 2 ---> Issue 4
Volume 1 ---> Issue 5
Volume 1 ---> Issue 4
Volume 1 ---> Issue 3
Volume 5 ---> Issue 10
Volume 5 ---> Issue 9
Volume 5 ---> Issue 8
Volume 5 ---> Issue 7
Volume 5 ---> Issue 6
Volume 5 ---> Issue 5
Volume 5 ---> Issue 4
Volume 5 ---> Issue 3
Volume 5 ---> Issue 2
Volume 5 ---> Issue 1
Volume 3 ---> Issue 11
Volume 3 ---> Issue 9
Volume 3 ---> Issue 3
Volume 2 ---> Issue 12
Volume 2 ---> Issue 4
Volume 1 ---> Issue 10
Volume 1 ---> Issue 8
Volume 1 ---> Issue 5
Volume 2 ---> Issue 1
Volume 5 ---> Issue 9
Volume 5 ---> Issue 8
Volume 5 ---> Issue 7
Volume 5 ---> Issue 6
Volume 5 ---> Issue 5
Volume 5 ---> Issue 4
Volume 5 ---> Issue 3
Volume 5 ---> Issue 2
Volume 5 ---> Issue 1
Volume 3 ---> Issue 11
Volume 3 ---> Issue 9
Volume 3 ---> Issue 3
Volume 2 ---> Issue 12
Volume 2 ---> Issue 4
Volume 1 ---> Issue 10
Volume 1 ---> Issue 8
Volume 1 ---> Issue 5
Volume 2 ---> Issue 1
Volume 4 ---> Issue 12
Volume 4 ---> Issue 11
Volume 4 ---> Issue 10
Volume 4 ---> Issue 9
Volume 4 ---> Issue 8
Volume 4 ---> Issue 7
Volume 4 ---> Issue 6
Volume 4 ---> Issue 5
Volume 4 ---> Issue 4
Volume 4 ---> Issue 3
Volume 4 ---> Issue 2
Volume 4 ---> Issue 1
Volume 3 ---> Issue 10
Volume 2 ---> Issue 5
Volume 2 ---> Issue 3
Volume 2 ---> Issue 2
Volume 1 ---> Issue 10
Volume 1 ---> Issue 4
Volume 2 ---> Issue 1
Volume 4 ---> Issue 11
Volume 4 ---> Issue 10
Volume 4 ---> Issue 9
Volume 4 ---> Issue 8
Volume 4 ---> Issue 7
Volume 4 ---> Issue 6
Volume 4 ---> Issue 5
Volume 4 ---> Issue 4
Volume 4 ---> Issue 3
Volume 4 ---> Issue 2
Volume 4 ---> Issue 1
Volume 3 ---> Issue 10
Volume 2 ---> Issue 5
Volume 2 ---> Issue 3
Volume 2 ---> Issue 2
Volume 1 ---> Issue 10
Volume 1 ---> Issue 4
Volume 2 ---> Issue 1
Volume 3 ---> Issue 12
Volume 3 ---> Issue 11
Volume 3 ---> Issue 10
Volume 3 ---> Issue 9
Volume 3 ---> Issue 8
Volume 3 ---> Issue 7
Volume 3 ---> Issue 6
Volume 3 ---> Issue 5
Volume 3 ---> Issue 4
Volume 3 ---> Issue 2
Volume 3 ---> Issue 1
Volume 2 ---> Issue 2
Volume 1 ---> Issue 10
Volume 1 ---> Issue 9
Volume 1 ---> Issue 3
Volume 3 ---> Issue 11
Volume 3 ---> Issue 10
Volume 3 ---> Issue 9
Volume 3 ---> Issue 8
Volume 3 ---> Issue 7
Volume 3 ---> Issue 6
Volume 3 ---> Issue 5
Volume 3 ---> Issue 4
Volume 3 ---> Issue 2
Volume 3 ---> Issue 1
Volume 2 ---> Issue 2
Volume 1 ---> Issue 10
Volume 1 ---> Issue 9
Volume 1 ---> Issue 3
Volume 2 ---> Issue 12
Volume 2 ---> Issue 11
Volume 2 ---> Issue 10
Volume 2 ---> Issue 9
Volume 2 ---> Issue 6
Volume 2 ---> Issue 5
Volume 2 ---> Issue 4
Volume 2 ---> Issue 3
Volume 2 ---> Issue 2
Volume 2 ---> Issue 8
Volume 2 ---> Issue 1
Volume 2 ---> Issue 11
Volume 2 ---> Issue 10
Volume 2 ---> Issue 9
Volume 2 ---> Issue 6
Volume 2 ---> Issue 5
Volume 2 ---> Issue 4
Volume 2 ---> Issue 3
Volume 2 ---> Issue 2
Volume 2 ---> Issue 8
Volume 2 ---> Issue 1
Call for Papers
Manual Article Submission
Email Us : editor@ijamsr.com
Track Your Article
Special Issue
Past Issues
Jean Watson’s Middle Range Theory of Human Caring: A Critique
Ms. Kholoud Najeh Alharbi, Dr. Omar Ghazi Baker,
CrossRef DOI : 10.31426/ijamsr.2020.3.1.3011
CrossRef DOI URL : https://doi.org/10.31426/ijamsr.2020.3.1.3011
Download PDF
Google Search
Abstract
There are different terms that are related to care in the nursing profession such as nursing care, care, care giving…..etc (Blasdell, 2017). “Caring is a nurturing way of relating to a valued other toward whom one feels a personal sense of commitment and responsibility†(Swanson, 1991, p. 162). Dr. Jean Watson is a professor and nursing theorist and the director of the Watson Caring Science Institute. She is known for her Theory of Human Caring. Between 1975 and 1979, Watson established the Theory of Human Caring from her personal views of nursing. She developed this middle-range theory to combine nursing with education, practice and social psychology studies (Watson, n.d.). There are three main conceptual elements in both the original and evolving theory. The concepts are evolved based on Dr. Watson’s experience and background. The three concepts of Watson’s Theory of Human Caring include carative factors, a caring relationship, and caring moments.
Design Of Local Thresholding Based Retinal Vessel Separation
Mohammad Sami, Dr. Avinash Gour
CrossRef DOI : 10.31426/ijamsr.2020.3.1.3012
CrossRef DOI URL : https://doi.org/10.31426/ijamsr.2020.3.1.3012
Download PDF
Google Search
Abstract
Limitation and division are significant errand in clinical picture examination. As we probably am aware identification of optic nerves is additionally a significant issue in mechanized retinal picture investigation framework. Picture division of clinical picture is exceptionally unpredictable and vital advance, in this arrangement division of retinal picture is more mind boggling in examination of others. For the retinal picture division, we use angle drop technique. Late exploration is centre around better exactness rate. This paper gives a superior over all the discovery procedure toward reasonable division of optic nerves utilizing inclination drop technique (GDM). For instatement of nearby form, we utilize Signed weight power work (SPF) which is district based dynamic shape model.
Spectral Coordinate Channel And Cosine Finder Additionally Accept Gaussian Conveyances For The Objectivity And Foundation Of Pixels
Sunil Singarapu, Dr. Avinash Gour
CrossRef DOI : 10.31426/ijamsr.2020.3.1.3013
CrossRef DOI URL : https://doi.org/10.31426/ijamsr.2020.3.1.3013
Download PDF
Google Search
Abstract
Comprehensive assessment using the hyper spectral datasets reveals the effective analyzes of spectral specifics from hyper spectral images by this review paper. The hyper spectral data sets are determined over the distorted Gaussian Processes related to those hyper spectral data sets and the resulting image is built by linking the structures with the unique Procedures. The Gaussian Processes are included in sets using groups of hyper spectral training data sets. In this paper we are going to review how to analyze spectral details from hyper spectral images using well-known spectral analyses by Gaussian Processes and combining them with the hyper spectral images. Each data set is distorted to match the spectral quantization of the test input hyper spectral image. This review and implementation utilize process Kernels to analyze the comparative smoothness of hyper spectral reflectance, and eliminates errors in resulting signals for better estimation of the hyper spectral reflectance result. This review concludes the anticipated Gaussian Processes and combined kernel based analyzing hyper spectral reflectance.